If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16k^2-108k+64=0
a = 16; b = -108; c = +64;
Δ = b2-4ac
Δ = -1082-4·16·64
Δ = 7568
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7568}=\sqrt{16*473}=\sqrt{16}*\sqrt{473}=4\sqrt{473}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-108)-4\sqrt{473}}{2*16}=\frac{108-4\sqrt{473}}{32} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-108)+4\sqrt{473}}{2*16}=\frac{108+4\sqrt{473}}{32} $
| 3m+4m=35 | | 50-2(x+7)^2=0 | | 11x+3-2x=21 | | 50-2x=40-x | | 16x-34=11x+26 | | 4(5x–6)–7=4–5(6x–7) | | 8m-24=33 | | 3x+5x=12+2x | | 6x+4x+5=25 | | Y^2-12y=-18 | | 4x-2x=6+7 | | {2x}=0.1 | | _x13-7=110 | | X+100=6x-100 | | Y2-12y=-18 | | X^2+6x-1332=0 | | 5(y-3)=35,y= | | 2p+4=8,p= | | -3y-(4y-1)=-(6y-2)-1 | | y-3.4=9.7 | | -3(y-3)=2(3-y)-(y-3) | | 65=−3d+8 | | 4y+2(y-1)=-3(-2y+2) | | 2/3+r=−4/9 | | 0,6x+10=4 | | -157=11-112x | | (4+x)^2+7=128 | | 0.8m-0.2=0.14 | | 8x+37-5x=15-x+7x-2 | | 5(x-2)-7=-(3x+6)+(-2x-11) | | 13x+16=6x-12 | | -3x+19=-4x+25 |